This study aimed to improve dissolution rate of valsartan in an acidic environment and consequently its oral bioavailability by solid dispersion formulation. Valsartan was selected as a model drug
due to its low oral bioavailability (~23%) caused by poor solubility of this drug in the low pH region of gastrointestinal tract (GIT) and presence of absorption window in the upper part of GIT.
Solid dispersions were prepared by solvent evaporation method with Eudragit® E100, Soluplus® or polyvinylpyrrolidone K25 (PVP K25) in drug:polymer weight ratios of 1:1, 1:2, 1:4 and 1:6 and further
subjected to solid-state characterization and in
vitro drug dissolution testing in 0.1 M HCl. The expected drug plasma concentration vs. time
profiles after oral administration of the selected solid dispersion formulations were predicted using physiologically-based in
silico modeling. Fast and complete dissolution of valsartan, with >80% of dissolved drug within the first 10 min of testing, was observed only from solid dispersions prepared with
Eudragit® E100 in drug:polymer ratios of 1:2, 1:4 and 1:6. In all other samples, valsartan dissolution was slow and incomplete. Solid-state characterization showed amorphous nature of both pure drug
and solid dispersion samples, as well as favourable intermolecular interactions between valsartan and polymers over interactions between drug molecules. The constructed in
silico model predicted >40% of increase in valsartan bioavailability, Cmax and AUC values from selected solid dispersion
formulations compared to conventional solid oral dosage form such as IR capsules. Based on the results of the in
vitro-in
silico study, formulation of solid dispersions of valsartan with Eudragit® E100 polymer can be considered as a promising approach for improving valsartan bioavailability.