Abstract
Albeit the rapidly evolving knowledge about tumor biochemistry enables various new drug molecules to be designed as treatments, malignant central nervous system (CNS) tumors remain untreatable due to the failure to expose the entire tumor to such therapeutics at pharmacologically meaningful quantities. Therefore, drug delivery in CNS tumors must be properly addressed, as otherwise, novel therapies will continue to fail. In this regard, nanomedicine poses an appealing platform for efficient drug delivery to the CNS, since it may be targeted to improve the drug availability in the site of action, which would be translated into lower drug doses and fewer side effects. Hence, the accumulation of data about the CNS physiology and their relevant receptors, the widening therapeutic armamentarium of drugs potentially useful in CNS chemotherapy and the alternative routes for administration may envisage nanomedicines as a forthcoming routine approach. Indeed, on the basis of the promising results gathered from preclinical studies of nanomedicine-based therapy both systemically and locally administered, some nanomedicines have already been approved for clinical trials in a variety of CNS tumor conditions to serve as the first steps in the translation of nanotherapy to clinic. Their outcome will steer research directions for further improvements.