Abstract
Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents. In vivo pharmacokinetic study showed that the maximal plasma methotrexate concentrations after oral administration of free methotrexate and methotrexate-loaded DA201-H (a commercial porous polymeric adsorbent) to rats occurred at 40 min and 5 h post-dose, respectively; and the plasma concentrations decreased to 22% after 5 h for free methotrexate and 44% after 24 h for methotrexate-loaded DA201-H, respectively. The load of methotrexate into the porous polymeric adsorbents not only resulted in obvious sustained release, but also enhanced the oral bioavailability of methotrexate. The areas under the curve, AUC0–24 and AUC0-inf, for methotrexate-loaded DA201-H increased 3.3 and 7.7 times, respectively, compared to those for free methotrexate.